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We consider one-dimensional Coulomb systems and their time evolution given 
by the Newton law. We give existence and uniqueness theorems for the solutions 
of the equations governing the systems in the thermodynamic limits. 
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1. INTRODUCTION 

This paper is based on a preprint of the same authors, (1~ in which the time 
evolution of one-dimensional Coulomb systems was studied. 

In that work we considered such systems in two different limits: the 
Vlasov and thermodynamic limits. 

After this preprint was written, we have learnt that the Vlasov limit for 
those systems has been previously studied by H. Neunzert and co-workers, 
obtaining results similar to ours. Although these results are still unpublished 
we prefer not to insert the Vlasov part in this paper. 

Consider a one-dimensional system of charged classical particles inter- 
acting via Coulomb forces. Let the total number of particles go to infinity, 
while the charge density and the total charge tend to some constant values. 
The limiting dynamics, if it exists, allows one to describe the time evolution 
of physically interesting states and hence the time-dependent thermody- 
namic behavior of the systems. 
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This kind of infinite dynamics has already been exploited by Lanford 
and by Dobrushin and Fritz (2) for one-dimensional neutral particle sys- 
tems, interacting via short-range forces. Other results in higher dimensions 
or different approaches to the problem may be found in Ref. 3. 

The reason for the existence of the dynamics for short-range forces is 
that any kind of perturbations that are sufficiently far removed do not 
greatly affect the motion of a test particle. This is not the case in our 
context, since adding one extra particle, even very far apart, we get a 
significant change in the motion of the test particle, because of the long 
range of the forces. 

Nevertheless a limit dynamics can still be defined. Following Refs. 4 
and 5 we realize that the main object to study in a statistical mechanical 
setup for this system is the profile of the electric field instead of the 
distribution of the charges. What we are able to prove is that a local 
perturbation of the electric field does not greatly influence the evolution of 
the electric field in regions that are sufficiently far away. We remark that a 
local perturbation of the electric field can be realized only conserving the 
total change. This control is sufficient in order that the evolution of a very 
large class of states makes sense. 

In the next section we solve this problem. Some probabilistic consider- 
ations that are necessary for completing our analysis are developed in the 
Appendix. 

. INFINITE VOLUME DYNAMICS 

Consider a system of infinite point charged particles, Its evolution is 

qi( t) = Igi( t ) 

m6i(t ) = ~ o i o j F ( q i ( t  ) - qj(t)), i ~ ~ (2.1) 
J 

with initial conditions 

qi(0) = qi, vi(0 ) = v, (2.2) 

Here m denotes the mass of the particles, o i = + 7 their charge, and 
F(q) = sgn(q), q E ~ ,  q ~ 0, F(0) = 0. 

The aim of this section is to give sense to the initial value problem (2. l) 
and (2.2). 

In spite of the simplicity of the forces, two features of the system (2.1) 
make the technology developed in Ref. 2 not directly applicable. First, we 
deal with non-Lipschitz forces, thus some care is to be used also in defining 

described by 
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a finite particles dynamics. Secondly the interaction has very long range 
and this may create problems. 

We begin by discussing the second (conceptually more interesting) 
problem. 

A quite natural approach to the above evolution problem is to find a 
solution of Eq. (2.1) as a limit of finite particle dynamics (after having 
made sense to it). Unfortunately, in general, such a limit does not exist. 
This is due to the fact that in adding a new particle to a finite system, a 
drastic perturbation arises in the motion of any other particle. This diffi- 
culty, however, can be avoided. Since we are interested, for thermodynami- 
cal reasons, in neutral systems, the natural perturbations to study are 
neutral too. Restricting our attention to neutral and local perturbations, we 
expect them to travel with finite speed. 

In fact the  adding of pairs of opposite new charges does not change 
the force acting on a distant test particle at time zero. 

These considerations would allow us to control the above limiting 
procedure. 

Let us be more precise in what we mean by the time evolution of a 
neutral state. We begin by giving its definition. 

Let L ~ ~ and u c be a symmetric probability measure on the space 

n Y,(L) = [J {(qi, oi, vi)i=lqi E ( - L , L ) , v  i E ~l,o : -I'-~) 
n=O 

The neutrality condition is expressed by the fact that PL is concentrated on 
the set of all X EY(L) such that ~=1oi= 0. In order to study the 
thermodynamic limit (L---> + oo) it is convenient to consider the distribu- 
tion of the electric field rather than the distribution of the charges. Let us 
introduce the space f~(L) = (E, V(E)), where E, the electric field, is a step 
function defined in [ - L ,  L], with finitely many jumps, with range in 23,Z, 
and such that E ( - L ) =  E(L)= 0 (neutrality condition). V(E) is the 
velocities field, V(E)= {vi}7=l are the velocities of the charges located in 
the discontinuity points of E. 

Clearly, Pc induce a measure on f~(L) that we denote ~L(dE, dV). 
As an example, the equilibrium measure at inverse temperature/3 and 

activity z is (see Refs. 4 and 5) 

~L(dE, dV) = (2.3) 
n o r m  

where PL(dE) is the Poisson measure (with parameter z) defined on the 
space of all the paths E [with values in 277/, piecewise constant and 
satisfying E ( -  L) = E(L) = 0]. Namely, the probability of having n jumps 
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of -27  in [ - L ,  L] in dq, . . . .  , dq, is given by 

( e x p -  2zL)  ~ dql . . . dq, 

In (2.3), 

(2.4) 

as 

E(x + r + E(x - ~) 
E ( x )  = lim (2.5) 

~ 0  + 2 

Now we are able to state the dynamical problem in f~. Let us come back to 
the particle interpretation, denoting by qi the discontinuity points (particles) 
of E and o i the associated charge + y, if the field E is jumping of _+ 2% 
respectively. 

We want to find a one-parameter group of transformations T, : ~2-~ ~2, 
t E ~, f~ ~ o~---> Tt~ = o~(t), satisfying 

qi( t) = ~i( t) (2.6) 

meg(t) = aiE (~( t), qi ), i ~ 7_ 

where E(o~(t), qi) is the electric field of o~(t) calculated at the point q~. The 
above map has to be understood in the following sense. At time zero 
starting from ~ = ~(0) we know the position of the charges and their 
velocities. They evolve according to (2.6) modifying the electric field that 
drives the motion. 

We choose with some care the initial conditions o~ for which we give 
sense to the evolution problem (2.6). This is necessary because initial 
configurations ~, exhibiting rapidly increasing behavior of E and V, may 
create singularities in finite time (as usual in this kind of problem; see Refs. 
2 and 3). 

d V -  d r 1 " ' "  dr, 
n! 

Other nonequilibrium measures can be defined in an obvious way. For 
example, states with space depending activity or temperature may be 
defined modifying the free measure PL(dE) or the Gibbs factor in (2.3). 
The thermodynamic limit for the measures (2.3) (and hence, with minor 
modifications, for the above nonequilibrium measures) has already been 
studied in Refs. '4 and 5 (see also the Appendix). 

The weak limit 17= limL_,~TL, exists and is defined on the space 
~2 = (E, V(E)}, where ~1 ~ x ~  E(x )  E 272[ is a step function with locally 
finite jumps and V(E)  = {vi)i~z are the velocities of the discontinuities o f  
E. 

It is useful to define the electric field also in the discontinuities points 
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From a physical point of view, the only restriction we impose in 
choosing the set f~o of the initial configurations is that it has to be typical 
for thermodynamically interesting measures. 

We define 

fa o = (~a ~ fa i Q(oa) < + oo } (2.7) 

where 

Q(~0) = max(Ql(o~), Q2(~), Q3(a,)) (2.8) 

and 

Q , (oa )=max(sup  [E(c0,x)] ) \ x ~  cp(x) ,1 (2.9) 

Q2(~~ eP(qi(~~176 1) (2.10) 

Q3(o~)=max(sup sup N(~ ) 
\ x a>r(x) 2a ,1 (2.11) 

where ~v(x) = max(1,1oglxl), l(x,a) = (x - a,x + a), and N(~IA ) is the 
number of discontinuities (particles) in the set A c N. 

It is proved in the Appendix, that the set f~0 is of full measure with 
respect to the equilibrium measure t7 (and also with respect to other 
nonequilibrium measures as those discussed above). 

For all o~ ~ f~ we define the map ~ w L ( t )  ~ f~ as the solution of the 
following initial value problem: 

qi(t) = qi(O) + (tvi(s) ds 
(2.12a) 

s ds ( ~ oiojF(qi(s) qj(s)) v , ( t )  = v i ( o )  + . - 
J 

E,(,o) + E,(,,,) 
xqAs) ~ ( - L ' L )  + ~ 2 

if i such that qi(0) E ( -  L, L); and 

qi( t) = qi(O) 
(2.12b) 

~ , ( t )  = v , (0 )  

otherwise. Here Et(~0 ) = E(~, - L ) ,  E,(~0)= E(oa, + L). 
The above problem corresponds to the Hamiltonian time evolution of 

the particles inside [ - L, L] under the action of their own field and the field 
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of the external ones thought of as fixed. We have put the evolution problem 
in integral form, because the discontinuity of the force makes the differen- 
tial version of the problem meaningless. We assume also elastic boundary 
conditions in + L. 

It turns out that the only source of nonuniqueness for the solutions of 
problem (2.12) lies in the possibility that a pair of particles collides with 
zero relative velocity. In fact this initial condition may give rise to two 
different time evolutions. We solve this ambiguity by "choosing" the 
solution in which the particles will separate after the collision. This corre- 
sponds to defining the solution of (2.12) as the limiting solution, for e ~ 0 ,  
of a regularized dynamics given by a force mollified in an e neighborhood 
of the origin. 

In any case this pathology is not relevant from a physical point of 
view, since the set of initial data exhibiting such a behavior has Lebesgue 
measure zero. 

The solution of the problem (2.12) is explicitly obtained in the space- 
time [ - L, L] x ~ as a collection of continuous curves each of them being a 
sequence of arcs of parabolas. Thus for any r E a0 we shall look for a limit 
point of ~oL(t) as L---> oe. It exists in view of the estimate of the next 
theorem. Denoting ~o = (qi, ai, f)i), 6oL(t)= (qiL(t),oi,•iL(t)}, we have the 
following: 

Theorem 2.1. Let ~0 ~ ~2 o. There exists a positive, continuous, in- 
creasing function h (~o, �9 ), such that 

Iq,L(t) - q,(0)[ <<. h(r [t[)~p(qi(O)), t ~ R (2.13) 

Proof. Fixed ~0=-~  (qi, oi, Vi} E ~  0 and denoting o~L(t) = -- (qi( t) ,ai ,  
vi(t)}, (dropping the index L for notational simplicity) we have 

E(~oL(s),q,(s)) = E(~o,c~(s)) + 2~(o~L(s),q,(s)) (2.14) 
where q5(c0 L(S), X) is the total charge crossing the point x from right to left, 
minus the total charge crossing the same point from left to right, during the 
time s, following the dynamics ~oL(s). 

We define for t > O: 

si(t ) = sup ]qi(t) - qi(O)l 
O < s < t  

si(t ) (2.15) 
d( t )  = sup qz(qi) 

and denote by ~i(t) the solution of the equation 

q,(t) = d(t)~p(Yb(t)) + q,(t) (2.16) 
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Then the particles that can reach up to the time t, the geometrical point 
qi(t), lie, at time zero, at most in the interval [2qi(t ) - gli(t), ~i(t)]. 

Hence 

[cb(o~L(s),qi(s))[ < yN(o~ I [ qi(s) - d(s)fp(qi(S)),qi(s ) "~- d(S)~ig(qi(S)) ]) 

(2.17) 

In virtue of (3.14) and (3.15) 

si(0 < Ip/(O)lt + Vfo'(t - s)lE(,~(s),q~(s))l ds 

+ Vfo'(t - s)lE(,~, q,(s))l d~ <[Pi(0)[ t 

+ 2Yfot(t- s)ldg(wL(s),qi(s))lds 

+ rfOO'(t -- s)Ql(oOw(qe(s))ds <~ lpi(O) l t 

+ 272fot(t - s)O3(o~)q~(q~(s)) ds 

+ 2V2fot(t -- s)O3(w)d(s)cp(4i(s))ds (2.18) 

where we have used (2.14), (2.17), (2.9), (2.11). 
Hence 

d(t) < Q2(~)t + [vOl(") + 2v203(")] 

X sup ~P(qi(s)) ds 

2 t [ ~(4i(s)) ] s u p  + 2")' Q3(oof ~ (t - s) d(s)ds  (2.19) 
i ~ (q , (O))  

A bound for ~li(t) may easily be obtained using the inequality r 
< 2(x + 01/2 in (2.16) and then bounding the solution 

[,~;(t)l < 8[ d(O 2 + Iqi(t)l + 1 ] (2.20) 

Using again (2.16) 

I#i(t)l < d(t) [2~p(d(t))  + ~(qi( t ) )  + k l ]  + Iq,(t)l 
<. k2( t) [  cp( d( t) ) + ~(  qi( t) ) ] + Iqi(t)l (2.21) 



816 Marchioro and Pulvirenti 

where k I = ~ ( 8 ) +  cp(1) and k 2 = 2 k  I [having used ~(x +y)~< T ( x ) +  
r 

Furthermore 

q)(~i(t)) <~ r -t- ~(d( t ) )  + ~p(qi(t)) + T(rp(d(t)))  

+ ~(~(q,( t ) ) )  

~< ~3I~(a(t ) )  + ~(q,(t))]  

where k 3 = qg(k2) + 4 [having used ~p(x) < Ix[ + 1]. 
Finally 

99(qi(t)) r 
< 1 + ~ 2 + ~(d(t ) )  

~(q;(0)) ~(q,(0)) 

and hence 

(2.22) 

(2.23) 

~(r 
<< k4qg(d(t)) (2.24) 

~(qi(o)) 
where k 4 = 4k 3. 

Thus, by (2.19), putting k 5 = 2( , /+  2y2), k 6 = 272k4 

2' d(t) < O(~0)t + ks Q(co) (t - ~)~ (d(~)) 

)f0t( +k6Q(~0 t - ~ ) d ( ~ ) ~ ( d ( s ) )  

< Q(co)t + (k  5 + k6) Q(o~)fot(t - s ) [d ( s )  + 1]~(d(s ) )  (2.25) 

and the thesis follows by observing that there exists a global solution for the 
differential problem associated to the integral inequality (2.25). �9 

The control (uniform in L) on the displacements, allow us to bound 
the growth of the electric field in any point [see (3.14) and (3.17)] and hence 
the force acting (up to some fixed time t) on each particle. 

Theorem 2.2. There exists a one-parameter group of transforma- 
tions 

a o ~  w--)co(t) e ao, ~0 = co(0) = (qi, ai, vi)iee, co(t) = (qi(t) ,ai ,vi(t)}i~ ~ 

satisfying the integral equations 

qi(t)  = q, + v,t  + ds(t - s)~,~e(co(~), qi(~)), i ~ z (2.26) 

Moreover, there exists a positive, increasing, continuous function of ltl, 
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h(w,-) and a sequence of integers (Lx } k~= ~, such that 

]qi(t) - qi(0)[ ~< h(o~, [tl)logqi (2.27) 

lim q/ '~( t )= qi(t) 
k----~ c~o (2.28) 
lim viLe(t) = v~(t), i E ?7, t E 

k - -~  ~ 

uniformly in t on compact sets. 
The limiting solution co(t)= (q~( t ) ,%vi ( t ) }  is the unique solution 

satisfying (2.27). 

Proof. 
Existence. As a consequence of the bound (2.13) we get a uniform (in 

L) control on the forces which allows us to apply the Ascoli-Arzel• 
theorem to obtain (2.28). Obviously w(t) = {qi(t), oi, vi(t)) satisfy (2.26) and 
(2.27). Moreover ~o(t) ~ a 0 as a consequence of (2.27). 

Uniqueness. Let w ~ ~0"(t), s = 1,2 be two solutions of (2.26) satisfying 
(2.27) and look at the ith particle. Then qil(t) and q](t) coincide up to some 
instant tl in which the ith particle collides with some other particle (sayjl)  
with the following properties: 

q),(t,) = q;( t , ) ,  q~(t,) ~ q; ( t , ) ,  s = 1,2 (2.29) 

This is because the only possibility for the ith particle to bifurcate its 
motion is to feel different external field and this means that it suffers 
different collisions in the two dynamics. 

Let us follow backward the motion of the particle j r  The particlej~ has 
already collided, at some first time t z, with a particle J2 @ i which has 
already bifurcated its motion and so on. 

Let {ti}s=l,2... be such collision times. They cannot be a finite 
number. If so, there would be an instant t, and a particle j ,  which has 
bifurcated in (0, t,) without colliding in such time with any other bifurcated 
particle. But this is impossible. Since the collision times are an infinite 
number, let us denote ~(t) = qj~ (t), tk + 1 < t < t k. Then 

El(S ) = q,( t , )  - 'k d'rvj,(~') + "+'d.c%,+,(~) (2.30) 
\ k = I  t~+l 

for s E (th+ z, th+ 1]" Since [%(r)] ~< Qz(w('r))~(qj~('r)), by putting 

u =  sup [ g l ( s ) - q i ( t , ) ] ,  Q =  sup Q(~o(s)) 
O < s < q  O < s <  t} 

we have by (2.30) 

u -<< It~l O (qo(u) + ep(qi(tl) } (2.31) 
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This implies u < + oo. Since qjk(O)~ qjh(O) for all h @ k, in the strip 
[ q i ( t l ) - u ,  qi(tO+ u]•  t d will fall infinitely many particles. This is 
clearly impossible, since ~0(t)~ f~0 and the proof of Theorem 2.2 is 
achieved. �9 

Remark. In virtue of the uniqueness theorem one can get the conver- 
gence for any sequence in (2.28). 
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A P P E N D I X  

We shall prove that 

17(~o) = 1 (A.1) 

where ~o is defined in (2.7) and t7 is the weak local limit of t7 L defined in 
(2.3). 

Let us recall some facts about such a limit (see Ref. 5 for details). 
Ignoring the momenta that are independently distributed, one defines 

gL(f)  = (A.2) 

We introduce the measure Pta,b](dE [ u, v), u, v ~ 2yZ, that is the Pois- 
son measure on the jump process starting at a, with value u, arriving in b 
with value v. [See (2.4).] By definition we have PE_L,Lj(dE[O, O)= PL(dE). 
P[a,b](dElu, v) is normalized to 

E z"lb- al~ n>~lu-vl n! e x p -  z[b - a] 

A semigroup on/2(277/) may be defined via the following kernel: 

( e x p - ~ x ) ( u , v ) = f P t o ,  xl(dE[u,v)exp[- ~ foXE(y)2dy] (A.3) 

It follows by the Feynman-Kac  formula 
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where 

Defining 

(a+)(u) = +(u + 2v) + ~(u - 2r) - 2q,(u) (A.5) 

1 if u = v 
Xv(U)= 0 otherwise 

(A.6) 

and denoting by (., -) the inner product on 12(27~), one defines 

# (F )  = Llimcr /TL(F ) 

(Xo,e- x+ L)fe- L- %) 
= lim _2eLx0 ) (A.7) 

L--> oo (X0 ,  e 

for all functions F(E) = f(E(x)),  f E 12(27Z). 
Such limit exists by the Krein-Rutman theorem and moreover: 

# (F )  = (~, f6) (A.8) 

where + denote the nondegenerate ground state of the positive operator ~. 
We claim 

#(expSIE(x)[ ) < C < + ~ (A.9) 

for sufficiently small 6 > 0. 

Proof. The eigenvalue equation is 

[ ( -  zk + . ) t ) ] (u)  + �88 fiu2tp(u) = [(h + a)~](u)  (A.10) 

for a > 0. h > 0 is the eigenvalue associated to #~. 
Hence 

#(u)=s (A.ll) 
Expanding in power series the off diagonal part of A 

#(u)=s176 = ~ x (zt)l<[ _~fi ] 
v ~ : ~ . : u - , v  ~ ( x + . ) -  v = +(v)  

(A.12) 

where vt:u---)v is a path in 27Z starting from u and arriving in v with 1~1 
jumps of length 27. Since ~p(u) > 0: 

(2z)" 
s dt exp[ - ( ,  + 2z)t] t"" (X + a)[l~b[]oo 

~(u) < ~,, ~ n! v <[4(~+a)/B] 1/2 n > [u--v[ 

< ~2 [ 2 / ( a + 2 z ) ]  X ( 4zk " 
v<[4(X+a)/fl]l/2 n> lu--vl ~ ) (A. 13) 
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for some k > O. By choosing a large enough, it follows that ~b(u) has, at 
least, exponentially decay and hence the claim. 

We define 

B = to E s sup < + oo (A.14) 
x~Q ~(x)  

where Q is the set of rational numbers. We shall prove # (B)=  1. This 
implies tT({to ] Ql(to) < + oo }) = 1. 

It is enough to prove that 

/7(B,) = 1 (A.15) 

where 

B,=(toEf~[xe,zsup ]E(to, x)lcp(x) < + ~ }  (A.16) 

We have 

B~ 

B[= 

U {tollE(to, x)l < mcp(x),x e cZ} 

r-/,(to i IE(to, x)l > mcp(x) forsomex eEZ}  (A.17) 
m E N  

N U {tollE(to, x)l > 
m ~ N  x E c Z  

Hence, by the Tchebycev inequality, 

fi(B[) <.<Jim ~] ~((tollE(to, x)l > row(x)}) 
x@,EZ 

< l i r a  E Cexp[-Sm~(x)] 
x~eZ 

<< lim [ C2exp[-6m+ l] + r x~,zlX[-Sm] = 0  (A. 18) 

Ixl>e 

Thus (A. 15) is proved. 
To complete the proof of (A.I) we need the following estimates: 

f~(d~)expS, T(~ I [ a ,b ] )  < e, expc,ib - a i (A.19) 

f #(dE)expSN(E I [a,b]) < e2expc2]b - al (A.20) 
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for sufficiently small 61 > 0, and 6 > 0 and r r el, ~'2 large enough. Here 

T(~l[a,b])= X v? 
i :qi@[a,b] 2m 

and N(E I [a, b]) is the number of jumps of E in [a, b]. 
In fact, using union-intersection tricks as above, by (A. 19) and (A.20) 

one deduces 

~7({ ~o [ sup sup 
x a>q0(x) 

sup 
x a>~(x) 

and by inequality 

[v,I < [ 
s u p  

2m [ x 

it follows 

)) 2a < + m = 1 (A.21) 

T(~o[I(x,a)) < 2  + o o } ) = 1  (A.22) 

T(~lI(x,a)) ]1/2 
sup ~P(qi) (A.23) 

a>~(x) 2 

~7({w I Q2(w) < + m}) = ~({o~ I Q3(~o) < + ce}) = 1 (A.24) 

Thus it remains to prove (A.19) and (A.20). 
Integrating explicitly on the momenta, 

f ~(d,~)exp{8,T(,~l[a,b])} < f ~(dE)exp~N(El[a,b]) (A.25) 

for some 8 > 0, thus (A.19) follows from (A.20). 

Proot ot (A.20). If [- L,L] D [a,b]: 
(Xo, e-  (e 

=u,v~2,~f PI-~,ol(aF~lO, u)exp[- ~ f~_f'2(x) dx] 

• v)exp -~s +SN(El[a,b]) 

• f Pib,Ll (dE[ v,O)exp{ - --~ ~LE2(x)dx ) (A.26) 

The second integral on the right-hand side of (A.26) is bounded by 

e S n l b  - al" exp(- zlb - a[) 
E n! <exp[z (e  ~ -  1 ) [b -a ] ]  (A.27) 
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Hence 
iz( e '~X( �9 l[a,b])) = 

Marchioro and Pulvirenti 

lim ~ exp[z(e ~ - l ) l b - a t l  
L--->~ u,vE277/ 

(Xo, e - ~ +  L)X~)(x., e - a  L- b)xo ) 
• 

(Xo,e-2eLXo)  

= ~ tp(u)t)(v)exp[2t+ z(e ~ -  1)lib- a I (A.28) 
u,v~2yZ 

This proves (A.20). 
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